Frontiers in Physiology (Jun 2021)
Proportional Assist Ventilation Improves Leg Muscle Reoxygenation After Exercise in Heart Failure With Reduced Ejection Fraction
Abstract
BackgroundRespiratory muscle unloading through proportional assist ventilation (PAV) may enhance leg oxygen delivery, thereby speeding off-exercise oxygen uptake (V.O2) kinetics in patients with heart failure with reduced left ventricular ejection fraction (HFrEF).MethodsTen male patients (HFrEF = 26 ± 9%, age 50 ± 13 years, and body mass index 25 ± 3 kg m2) underwent two constant work rate tests at 80% peak of maximal cardiopulmonary exercise test to tolerance under PAV and sham ventilation. Post-exercise kinetics of V.O2, vastus lateralis deoxyhemoglobin ([deoxy-Hb + Mb]) by near-infrared spectroscopy, and cardiac output (QT) by impedance cardiography were assessed.ResultsPAV prolonged exercise tolerance compared with sham (587 ± 390 s vs. 444 ± 296 s, respectively; p = 0.01). PAV significantly accelerated V.O2 recovery (τ = 56 ± 22 s vs. 77 ± 42 s; p < 0.05), being associated with a faster decline in Δ[deoxy-Hb + Mb] and QT compared with sham (τ = 31 ± 19 s vs. 42 ± 22 s and 39 ± 22 s vs. 78 ± 46 s, p < 0.05). Faster off-exercise decrease in QT with PAV was related to longer exercise duration (r = −0.76; p < 0.05).ConclusionPAV accelerates the recovery of central hemodynamics and muscle oxygenation in HFrEF. These beneficial effects might prove useful to improve the tolerance to repeated exercise during cardiac rehabilitation.
Keywords