Brazilian Journal of Pharmaceutical Sciences (Jan 2013)
Dendritic surface functionalization of nanomaterials: controlling properties and functions for biomedical applications
Abstract
A wide variety of nanomaterials have demonstrated promise in medical applications such as drug delivery and imaging. In these applications, the surface chemistry of the materials is critical as it plays an important role in determining the toxicity and biodistribution behavior of the material. We review here the functionalization of nanomaterials with dendrons as an efficient method to alter the surface chemistry of the materials, introducing new properties and functions. Described here is the functionalization of superparamagnetic iron oxide nanoparticles (SPIO) with dendritic guanidines to enhance their transport into cells for magnetic resonance imaging applications. The introduction of dendrons bearing peripheral hydroxyls, amines, guanidines, carbohydrates and Gd(III) chelates to polymer vesicles (polymersomes) is also described. These dendritic moieties allow for modulation of toxicity, cell uptake, protein binding, and contrast agent efficiency, while at the same time allowing the stabilities of the polymersomes to be maintained. Thus, this approach holds promise for the development of a wide range of multifunctional materials for pharmaceutical applications.
Keywords