Heliyon (Feb 2024)

Animal models of brain and spinal cord metastases of NSCLC established using a brain stereotactic instrument

  • Xuerou Liu,
  • Shiyao Liu,
  • Yumei Yang,
  • Hui Cai,
  • Ruijie Zheng,
  • Yaoshuai Zhang,
  • Xian Li,
  • Fangtian Fan,
  • Hao Liu,
  • Shanshan Li

Journal volume & issue
Vol. 10, no. 3
p. e24809

Abstract

Read online

Objective: Animal models of brain and spinal cord metastases of non-small cell lung cancer were established through the intracranial injection of PC-9 Luc cells with a brain stereotaxic device. This method provides a reliable modeling method for studying brain and spinal cord metastases of non-small cell lung cancer. Methods: PC-9 Luc cells at logarithmic growth stage were injected into the skulls of 5-week-old BALB/c nude mice at different cell volumes (30 × 104, 80 × 104) and different locations (using anterior fontanel as a location point, 1 mm from the coronal suture, and 1.5 mm from the sagittal suture on the right upper and right lower side of the skull). After 1 week of cell inoculation, fluorescence signals of tumor cells in the brain and spinal were detected using the IVIS Xenogen Imaging system. After 4 weeks, brain and spinal tissues from the nude mice were harvested. Following paraffin-embedded sectioning, HE staining was performed on the tissues. Results: The fluorescence signals revealed that both brain and spinal cord metastasis occurred in the mice where the cells were injected at the lower right side of the skull. There was only brain metastasis in the nude mice injected with 30 × 104 cells at the upper right side of the skull. Both brain and spinal cord metastasis occurred in the nude mice injected with 80 × 104 cells. The HE staining revealed that both brain and spinal cord metastasis occurred in the mice injected with different amounts of PC-9 Luc cells, consistent with the results detected using the IVIS Xenogen Imaging system, thereby demonstrating the reliability of detecting fluorescent signals in vivo to determine tumor growth. Conclusion: It is a reliable method to establish the animal model of brain and spinal cord metastases of non-small cell lung cancer by injecting different quantities of cells from different positions with a brain stereotaxic device. The IVIS Xenogen Imaging system has high reliability in detecting the fluorescence signals of brain and spinal cord metastatic tumors.

Keywords