Науковий вісник Ужгородського університету. Серія: Математика і інформатика (Nov 2020)

Про центральнi ряди деяких чернiковських p-груп

  • Д. Ю. Бiлецька,
  • I. В. Шапочка

DOI
https://doi.org/10.24144/2616-7700.2020.2(37).36-44
Journal volume & issue
Vol. 2, no. 37
pp. 36 – 44

Abstract

Read online

В цій роботі досліджується структура центрального ряду черніковської \(p\)-групи \(G\), яка містить максимальну повну абелеву підгрупу \(M\) індексу \(p\). Добре відомо, що така група є гіперцентальною групою. З іншого боку із теорії розширень груп також добре відомо, що будову цієї групи можна визначити за допомогою певного цілочислового $p$-адичного матричного зображення $\Gamma$ фактор-групи $G/M$ та елементом із другої групи гомологій \(H^2(G/M,M)\). Якщо група \(G\) має центральний ряд \(Z_1\subset Z_2\subset \ldots \subset Z_{\omega}\subset \ldots \subset G\), який є композиційним рядом, то число трансфінітних чисел множини індексів членів цього ряду будемо називати трансфінітною довжиною цього композиційного ряду. Вважатимемо, що \(G\) є адитивною групою, а \(\Gamma\) --- матричне цілочислове \(p\)-адичне зображення фактор-групи \(G/M\), індуковане гомоморфізмом \(f:g\to f_g\), \(g\in G\), із групи \(G\) в групу автоморфізмів \(\mathrm{Aut}\,M\), де \(f_g(m)=-g+m+g\), \(m\in M\). Нами показано, що трансфінітна довжина композиційного ряду групи \(G\) дорівнює кратності незвідної компоненти \(g+M\to 1\) зображення \(\Gamma\), якщо \(G\) є абелевою групою, і на одиницю більше цього числа, якщо ж \(G\) --- неабелева група. Нехай $\mathbb{C}_{p^\infty}$ --- адитивна квазіциклічна $p$-група, а $\mathbb{C}_{p^\infty}^n$ --- зовнішня пряма сума $n$ екземплярів квазіциклічної $p$-групи $\mathbb{C}_{p^\infty}$ для деякого натурального числа $n$. Добре відомо \cite{Kurosh}, що група $\mathrm{Aut}\,\mathbb{C}_{p^\infty}^n$ ізоморфна повній лінійній групі $\mathrm{GL}(n,\mathbb{Z}_p)$, де $\mathbb{Z}_p$ --- кільце цілих $p$\nobreakdash-адичних чисел. Тому надалі для довільної матриці $A\in \mathrm{GL}(n,\mathbb{Z}_p)$ та довільного елемента $c\in \mathbb{C}_{p^\infty}^n$ через $A(c)$ позначатимемо образ елемента $c$ при автоморфізмі, що відповідає матриці $A$. Нехай $\{a_r\:|$ $r\in\mathbb{N}_0\}$ --- множина всіх твірних елементів групи $C_{p^\infty}$, де $\mathbb{N}_0=\mathbb{N}\cup \{0\}$, причому $pa_0=0$, $pa_r=a_{r-1}$ для довільного $r\in\mathbb{N}$. Розглянемо циклічну адитивну групу $H$ порядку $p$ з твірним елементом $h$ і деяке матричне зображення $\Gamma$ цієї групи степеня $n$ над кільцем $\mathbb{Z}_p$. Образ будь-якого елемента $h'$ групи $H$ позначатимемо через $\Gamma_{h'}$. Визначимо дію $\cdot$ групи $H$ на групі $\mathbb{C}_{p^\infty}^n$ за правилом \(h'\cdot c=\Gamma_{h'}(c)\) для довільних елементів $h'\in H$ і $c\in \mathbb{C}_{p^\infty}^n$. Підкреслимо, що ядро $\mathrm{Ker}\,\Gamma$ є підгрупою стабілізатора кожного елемента із $\mathbb{C}_{p^\infty}^n$. Нескладно переконатися, що множина \[\mathfrak{z}(\Gamma)=\{c\in\mathbb{C}_{p^\infty}^n\:|\:h\cdot c=c\}\] є підгрупою групи $\mathbb{C}_{p^\infty}^n$. Для матричного зображення $\Gamma$ групи $H$ та деякого елемента $c\in\mathfrak{z}(\Gamma)$ побудуємо групу $G(\Gamma, c)$ наступним чином: \[G(\Gamma, c)= H\times \mathbb{C}_{p^\infty}^n,\] а бінарна операція $+$ задається так \[ (ih,c_1)+(jh,c_2)=((i+j)h,\; \mu_{i,j}c+jh\cdot c_1+c_2), \] де $i$, $j\in\{0,1,\ldots,p-1\}$, $c_1, c_2\in \mathbb{C}_{p^\infty}^n$, \[\mu_{i,j}=\left\{\begin{array}{ll}0,&\text{якщо } i+j<p,\\1,&\text{якщо } i+j\ge p.\end{array}\right.\] В \cite{Hall} доведено, що таким чином побудована група є циклічним розширенням групи $\mathbb{C}_{p^\infty}^n$ за допомогою групи $H$, а як наслідок, є черніковською $p$-групою. В [1] описані з точністю до ізоморфізму всі черніковські $p$-групи, фактор-група яких за максимальною повною абелевою підгрупою є циклічною групою порядку $p$. Вони вичерпуються наступними групами: \[ G(n_1\Gamma_1+n_2\Gamma_2+n_3\Gamma_3,0), \quad G(\Gamma_1+n_1\Gamma_1+n_2\Gamma_2+n_3\Gamma_3,\mathfrak{c}^{(n_1(p-1)+n_2+n_3p)}) \] де \[\Gamma_1:h\to\tilde\varepsilon,\qquad \Gamma_2:h\to 1,\qquad \Gamma_3:h\to\begin{pmatrix}\tilde\varepsilon&\langle1\rangle\\0&1\end{pmatrix}\] --- всі попарно нееквівалентні нерозкладні матричні зображення циклічної групи \(H\) над кільцем \(\mathbb{Z}_p\); \(\tilde\varepsilon\), \(\langle1\rangle\) --- відповідно \((p-1)\times(p-1)\)- та \((p-1)\times 1\)-матриці над кільцем \(\mathbb{Z}_p\) вигляду: \[ \tilde\varepsilon=\begin{pmatrix}0&0&\ldots&0&-1\\1&0&\ldots&0&-1\\ 0&1&\ldots&0&-1\\\vdots&\vdots&\ddots&\vdots&\vdots\\0&0&\ldots&1&-1\end{pmatrix},\quad \langle1\rangle= \begin{pmatrix}1\\0\\\vdots\\0\end{pmatrix};\] \(n_1\), \(n_2\), \(n_3\in\mathbb{N}_0\); \(n_1\Gamma_1+n_2\Gamma_2+n_3\Gamma_3\) --- розкладне матричне зображення групи \(H\) з \(n_i\) екземплярами нерозкладного зображення \(\Gamma_i\) для \(i\in\{1,2,3\}\); \[ \mathfrak{c}^{(k)}=((p-1)a_0,(p-2)a_0,\ldots,a_0,\underbrace{0,\ldots,0}_{k\text{ раз}}),\quad k \in\mathbb{N}_0. \] В роботі для кожної з груп \[G(n_1\Gamma_1+n_2\Gamma_2+n_3\Gamma_3,0),\quad G(\Gamma_1+n_1\Gamma_1+n_2\Gamma_2+n_3\Gamma_3,\mathfrak{c}^{(n_1(p-1)+n_2+n_3p)})\] побудовано композиційний центральний ряд.

Keywords