PLoS Pathogens (Nov 2022)

Reconstitution of an N-AChR from Brugia malayi, an evolved change in acetylcholine receptor accessory protein requirements in filarial parasites.

  • Jennifer D Noonan,
  • Robin N Beech

DOI
https://doi.org/10.1371/journal.ppat.1010962
Journal volume & issue
Vol. 18, no. 11
p. e1010962

Abstract

Read online

Neurotransmission is an important target for anthelmintic drugs, where receptor characteristics and response can be examined through reconstitution ex vivo in Xenopus laevis oocytes. The homomeric ACR-16 nicotine sensitive acetylcholine receptors (N-AChRs) of several helminth species have been characterized in this way. Our efforts to reconstitute the N-AChR from the clade III filarial parasite, Brugia malayi using similar conditions, initially produced no detectable response. A robust response to acetylcholine is obtained from the closely related clade III parasite Ascaris suum, suggesting that specific changes have occurred between Ascaris and Brugia. N-AChRs from three species intermediate between A. suum and B. malayi were characterized to provide information on the cause. Maximal response to acetylcholine did not change abruptly, consistent with a discrete event, but rather decreased progressively from A. suum through Dracunculus medinensis, Gonglylonema pulchrum and Thelazia callipaeda. Receptor responses to the characteristic nicotine, and other agonists were generally similar. The decrease in maximal current did correlate with a delayed time to reach larger response. Together, this suggested that the failure to reconstitute the B. malayi N-AChR was one extreme of a progressive decrease and that an issue with synthesis of the receptor in oocytes was responsible. Addition of accessory proteins EMC-6, NRA-2 and NRA-4, in addition to RIC-3, produced a small, but measurable B. malayi N-AChR response. Pharmacological properties of a chimeric B. malayi N-AChR were equivalent to the other species, confirming the receptor response remains unchanged while its production is increasingly dependent on accessory proteins. One possibility is that loss of many subunits for acetylcholine receptors from the filarial nematode genome is linked to new subunit combinations that lead to such a dependence. This novel phylogenetic approach allowed the first characterization of a B. malayi AChR ex vivo and in doing so, provides a framework for the successful characterization of other receptors that have yet to be reconstituted.