Natural Gas Industry B (Sep 2017)
An optimal design of cluster spacing intervals for staged fracturing in horizontal shale gas wells based on the optimal SRVs
Abstract
When horizontal well staged cluster fracturing is applied in shale gas reservoirs, the cluster spacing is essential to fracturing performance. If the cluster spacing is too small, the stimulated area between major fractures will be overlapped, and the efficiency of fracturing stimulation will be decreased. If the cluster spacing is too large, the area between major fractures cannot be stimulated completely and reservoir recovery extent will be adversely impacted. At present, cluster spacing design is mainly based on the static model with the potential reservoir stimulation area as the target, and there is no cluster spacing design method in accordance with the actual fracturing process and targets dynamic stimulated reservoir volume (SRV). In this paper, a dynamic SRV calculation model for cluster fracture propagation was established by analyzing the coupling mechanisms among fracture propagation, fracturing fluid loss and stress. Then, the cluster spacing was optimized to reach the target of the optimal SRVs. This model was applied for validation on site in the Jiaoshiba shale gasfield in the Fuling area of the Sichuan Basin. The key geological engineering parameters influencing the optimal cluster spacing intervals were analyzed. The reference charts for the optimal cluster spacing design were prepared based on the geological characteristics of south and north blocks in the Jiaoshiba shale gasfield. It is concluded that the cluster spacing optimal design method proposed in this paper is of great significance in overcoming the blindness in current cluster perforation design and guiding the optimal design of volume fracturing in shale gas reservoirs. Keywords: Shale gas, Horizontal well, Staged fracturing, Cluster spacing, Reservoir, Stimulated reservoir volume (SRV), Mathematical model, Optimal method, Sichuan basin, Jiaoshiba shale gasfield