PLoS ONE (Jan 2015)
Genomic DNA hypomethylation is associated with neural tube defects induced by methotrexate inhibition of folate metabolism.
Abstract
DNA methylation is thought to be involved in the etiology of neural tube defects (NTDs). However, the exact mechanism between DNA methylation and NTDs remains unclear. Herein, we investigated the change of methylation in mouse model of NTDs associated with folate dysmetabolism by use of ultraperformance liquid chromatography tandem mass spectrometry (UPLC/MS/MS), liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS), microarray, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and Real time quantitative PCR. Results showed that NTD neural tube tissues had lower concentrations of 5-methyltetrahydrofolate (5-MeTHF, P = 0.005), 5-formyltetrahydrofolate (5-FoTHF, P = 0.040), S-adenosylmethionine (SAM, P = 0.004) and higher concentrations of folic acid (P = 0.041), homocysteine (Hcy, P = 0.006) and S-adenosylhomocysteine (SAH, P = 0.045) compared to control. Methylation levels of genomic DNA decreased significantly in the embryonic neural tube tissue of NTD samples. 132 differentially methylated regions (35 low methylated regions and 97 high methylated regions) were selected by microarray. Two genes (Siah1b, Prkx) in Wnt signal pathway demonstrated lower methylated regions (peak) and higher expression in NTDs (P<0.05; P<0.05). Results suggest that DNA hypomethylation was one of the possible epigenetic variations correlated with the occurrence of NTDs induced by folate dysmetabolism and that Siah1b, Prkx in Wnt pathway may be candidate genes for NTDs.