Green Processing and Synthesis (Oct 2020)

In vitro bactericidal, antidiabetic, cytotoxic, anticoagulant, and hemolytic effect of green-synthesized silver nanoparticles using Allium sativum clove extract incubated at various temperatures

  • Andleeb Saiqa,
  • Tariq Faiza,
  • Muneer Areesha,
  • Nazir Tooba,
  • Shahid Beenish,
  • Latif Zahid,
  • Abbasi Shahab Ahmed,
  • Haq Ihsan ul,
  • Majeed Zahid,
  • Khan Salah Ud-Din,
  • Khan Shahab Ud-Din,
  • Khan Taj Muhammad,
  • Al Farraj Dunia A.

DOI
https://doi.org/10.1515/gps-2020-0051
Journal volume & issue
Vol. 9, no. 1
pp. 538 – 553

Abstract

Read online

The current research aimed to evaluate in vitro biological activities of green-synthesized silver nanoparticles using the Allium sativum clove extract. The stability of green-synthesized silver nanoparticles was evaluated via storage at 4°C, room temperature (37°C), and calcined at 300°C, 500°C, and 700°C. The antibacterial effect was evaluated using agar well, spread plate, biofilm reduction, and cell proliferation inhibition assays. The cytotoxic and antidiabetic effects were determined via brine shrimp lethality, protein kinase inhibition, and α-amylase inhibition assays. DPPH scavenging, iron-chelating, anticoagulant, and hemolytic effects were evaluated. The highest inhibition of Klebsiella pneumoniae was observed when freshly prepared, calcined (300°C), and stored nanoparticles (4°C and 37°C) were applied (9.66, 9.55, 7.33, and 6.65 mm) against freshly prepared and calcined at 700°C which showed the highest inhibition of Pseudomonas aeruginosa (8.55 and 7.66 mm). Cell viability assay, biofilm reduction assay, and spread plate method showed a significant antibacterial effect of freshly prepared silver nanoparticles. Freshly prepared and calcined nanoparticles at 300°C and 500°C possessed strong antioxidant and iron-chelating activity. Among all the synthesized silver nanoparticles, freshly prepared and calcined nanoparticles (300°C and 500°C) increases the prothrombin time. Silver nanoparticles possessed significant anticoagulant properties and less toxic at least concentration toward human RBCs. In brine shrimp lethality assay, freshly prepared nanoparticles showed a stronger toxic effect and caused high mortality of larvae. Protein kinase inhibition assay revealed that freshly prepared nanoparticles had the highest zone of inhibition (18.0 mm) at 50 µg/disc. Green-synthesized nanoparticles would be used as potential therapeutic agents to overcome both infectious and noninfectious diseases.

Keywords