Genetics and Molecular Biology (Apr 2021)
Gene structure of three kinds of vacuolar-type Na+/H+ antiporters including TaNHX2 transcribed in bread wheat
Abstract
Abstract The vacuolar-type sodium/proton antiporter is considered to play an important role in withstanding salt stress by transporting sodium ions into vacuoles. In this study, the gene structures of three kinds of vacuolar-type antiporters transcribed in bread wheat under salt stress were analyzed. After spraying 0.5 M NaCl to seedlings of wheat cultivar Chinese Spring, 1,392~1,400 bp cDNA fragments were isolated by RT-PCR using primers designed from common regions in rice OsNHX1 and Atriplex subcordata AgNHX1. Next, the entire structure of the genomic DNA and cDNA were determined via CapFishing-5’ Rapid Amplification of cDNA Ends (RACE), 3’RACE, and genomic PCR cloning. As a result, 3 kinds of vacuolar-type Na+/H+ antiporter genes, TaNHXa (genome DNA 4,255 bp, cDNA 2,414 bp, 539 a.a.), TaNHXb (gDNA 4,167 bp, cDNA 1,898 bp, 539 a.a.) and TaNHXc (gDNA 4,966 bp, cDNA 1,928 bp, 547 a.a.), were identified. They encode 12 transmembrane domains containing third domain’s amyloid binding sites (FFIYLLPP), characteristic of the vacuolar-type Na+/H+ antiporter, binding to the cell vacuolar membrane. TaNHXa, b and c consisting of 14 exons and 13 introns were 22~55 % longer than A. thaliana AtNHX1 in total length. TaNHXa (TaNHX2) showed homogeneity with OsNHX1, while TaNHXb and c were phylogenetically independent.
Keywords