Noncanonical genomic imprinting in the monoamine system determines naturalistic foraging and brain-adrenal axis functions
Paul J. Bonthuis,
Susan Steinwand,
Cornelia N. Stacher Hörndli,
Jared Emery,
Wei-Chao Huang,
Stephanie Kravitz,
Elliott Ferris,
Christopher Gregg
Affiliations
Paul J. Bonthuis
Department of Comparative Biosciences, University of Illinois at Urbana-Champaign College of Veterinary Medicine, Urbana, IL, USA
Susan Steinwand
Department of Neurobiology, University of Utah School of Medicine, Room 408B, Biopolymers Research Building, Bld. 570, 20 South 2030 East, Salt Lake City, UT 84112, USA
Cornelia N. Stacher Hörndli
Department of Neurobiology, University of Utah School of Medicine, Room 408B, Biopolymers Research Building, Bld. 570, 20 South 2030 East, Salt Lake City, UT 84112, USA
Jared Emery
Department of Neurobiology, University of Utah School of Medicine, Room 408B, Biopolymers Research Building, Bld. 570, 20 South 2030 East, Salt Lake City, UT 84112, USA
Wei-Chao Huang
Department of Neurobiology, University of Utah School of Medicine, Room 408B, Biopolymers Research Building, Bld. 570, 20 South 2030 East, Salt Lake City, UT 84112, USA
Stephanie Kravitz
Department of Neurobiology, University of Utah School of Medicine, Room 408B, Biopolymers Research Building, Bld. 570, 20 South 2030 East, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah School of Medicine, Room 408B, Biopolymers Research Building, Bld. 570, 20 South 2030 East, Salt Lake City, UT 84112, USA
Elliott Ferris
Department of Neurobiology, University of Utah School of Medicine, Room 408B, Biopolymers Research Building, Bld. 570, 20 South 2030 East, Salt Lake City, UT 84112, USA
Christopher Gregg
Department of Neurobiology, University of Utah School of Medicine, Room 408B, Biopolymers Research Building, Bld. 570, 20 South 2030 East, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah School of Medicine, Room 408B, Biopolymers Research Building, Bld. 570, 20 South 2030 East, Salt Lake City, UT 84112, USA; Corresponding author
Summary: Noncanonical genomic imprinting can cause biased expression of one parental allele in a tissue; however, the functional relevance of such biases is unclear. To investigate ethological roles for noncanonical imprinting in dopa decarboxylase (Ddc) and tyrosine hydroxylase (Th), we use machine learning to decompose naturalistic foraging in maternal and paternal allele mutant heterozygous mice. We uncover distinct roles for the maternal versus paternal alleles on foraging, where maternal alleles affect sons while daughters are under paternal allelic control. Each parental allele controls specific action sequences reflecting decisions in naive or familiar contexts. The maternal Ddc allele is preferentially expressed in subsets of hypothalamic GABAergic neurons, while the paternal allele predominates in subsets of adrenal cells. Each Ddc allele affects distinct molecular and endocrine components of the brain-adrenal axis. Thus, monoaminergic noncanonical imprinting has ethological roles in foraging and endocrine functions and operates by affecting discrete subsets of cells.