Tomography (Aug 2021)

7-Tesla Functional Cardiovascular MR Using Vectorcardiographic Triggering—Overcoming the Magnetohydrodynamic Effect

  • Christian Hamilton-Craig,
  • Daniel Stäeb,
  • Aiman Al Najjar,
  • Kieran O’Brien,
  • William Crawford,
  • Sabine Fletcher,
  • Markus Barth,
  • Graham Galloway

DOI
https://doi.org/10.3390/tomography7030029
Journal volume & issue
Vol. 7, no. 3
pp. 323 – 332

Abstract

Read online

Objective: Ultra-high-field B0 ≥ 7 tesla (7T) cardiovascular magnetic resonance (CMR) offers increased resolution. However, electrocardiogram (ECG) gating is impacted by the magneto-hydrodynamic effect distorting the ECG trace. We explored the technical feasibility of a 7T magnetic resonance scanner using an ECG trigger learning algorithm to quantitatively assess cardiac volumes and vascular flow. Methods: 7T scans were performed on 10 healthy volunteers on a whole-body research MRI MR scanner (Siemens Healthineers, Erlangen, Germany) with 8 channel Tx/32 channels Rx cardiac coils (MRI Tools GmbH, Berlin, Germany). Vectorcardiogram ECG was performed using a learning phase outside of the magnetic field, with a trigger algorithm overcoming severe ECG signal distortions. Vectorcardiograms were quantitatively analyzed for false negative and false positive events. Cine CMR was performed after 3rd-order B0 shimming using a high-resolution breath-held ECG-retro-gated segmented spoiled gradient echo, and 2D phase contrast flow imaging. Artefacts were assessed using a semi-quantitative scale. Results: 7T CMR scans were acquired in all patients (100%) using the vectorcardiogram learning method. 3,142 R-waves were quantitatively analyzed, yielding sensitivity of 97.6% and specificity of 98.7%. Mean image quality score was 0.9, sufficient to quantitate both cardiac volumes, ejection fraction, and aortic and pulmonary blood flow. Mean left ventricular ejection fraction was 56.4%, right ventricular ejection fraction was 51.4%. Conclusion: Reliable cardiac ECG triggering is feasible in healthy volunteers at 7T utilizing a state-of-the-art three-lead trigger device despite signal distortion from the magnetohydrodynamic effect. This provides sufficient image quality for quantitative analysis. Other ultra-high-field imaging applications such as human brain functional MRI with physiologic noise correction may benefit from this method of ECG triggering.

Keywords