Energies (May 2021)

Environmental Impact Evaluation of Current Municipal Solid Waste Treatments in India Using Life Cycle Assessment

  • Venkata Ravi Sankar Cheela,
  • Michele John,
  • Wahidul K. Biswas,
  • Brajesh Dubey

DOI
https://doi.org/10.3390/en14113133
Journal volume & issue
Vol. 14, no. 11
p. 3133

Abstract

Read online

An environmental life cycle assessment was conducted to compare proposed municipal solid waste treatment systems with the existing system in Visakhapatnam, India. Five waste alternative treatment systems, including open dumping of municipal solid waste (S1), landfill without gas recovery [LFWGR] (S2), landfill with gas recovery (S3), anaerobic digestion + LFWGR (S4), and incineration + LFWGR (S5). EASETECHTM was considered for assessment using ReCiPE Midpoint (Heuristic) world environmental impact assessment method. Global warming potential (GWP), terrestrial acidification (TA), freshwater eutrophication (FEW), marine water eutrophication (ME), human toxicity (HTP), terrestrial ecotoxicity (TE), freshwater ecotoxicity (FWT), and marine ecotoxicity (MET) impacts were determined for each option. The existing MSW disposal practice in Visakhapatnam city (baseline scenario, S1) has the highest GWP (1107 kg CO2 eq.), which can potentially be reduced to 68.2%, 81.5%, 98.2%, and 94.5% by alternative waste management scenarios S2, S3, S4 and S5, respectively. Scenario S4, involving the use of anaerobic digestion of food waste and residues dumped in engineered landfill without energy recovery was found to be the option with the highest mitigation potential of most of the impacts, and it contributes to significant environmental benefits in terms of ecological footprints in a low-income country such as India. Sensitivity analysis was conducted to confirm the reasonable legitimacy of data used for the determination of the impacts.

Keywords