Physical Review Research (Apr 2023)

Chiral orbital order of interacting bosons without higher bands

  • Marco Di Liberto,
  • Nathan Goldman

DOI
https://doi.org/10.1103/PhysRevResearch.5.023064
Journal volume & issue
Vol. 5, no. 2
p. 023064

Abstract

Read online Read online

Ultracold atoms loaded into higher Bloch bands provide an elegant setting for realizing many-body quantum states that spontaneously break time-reversal symmetry through the formation of chiral orbital order. The applicability of this strategy remains nonetheless limited due to the finite lifetime of atoms in high-energy bands. Here we introduce an alternative framework, suitable for bosonic gases, which builds on assembling square plaquettes pierced by a π flux (half a magnetic-flux quantum). This setting is shown to be formally equivalent to an interacting bosonic gas loaded into p orbitals, and we explore the consequences of the resulting chiral orbital order, both for weak and strong on-site interactions. We demonstrate the emergence of a chiral superfluid vortex lattice, exhibiting a long-lived gapped collective mode that is characterized by local chiral currents. This chiral superfluid phase is shown to undergo a phase transition to a chiral Mott insulator for sufficiently strong interactions. Our work establishes coupled π-flux plaquettes as a practical route for the emergence of orbital order and chiral phases of matter.