Neoplasia: An International Journal for Oncology Research (Apr 1999)

Mutation and Expression of the p51 Gene in Human Lung Cancer

  • Masachika Tani,
  • Kimihiro Shimizu,
  • Chikashi Kawahara,
  • Takashi Kohno,
  • Osamu Ishimoto,
  • Shuntaro Ikawa,
  • Jun Yokota

DOI
https://doi.org/10.1038/sj.neo.7900008
Journal volume & issue
Vol. 1, no. 1
pp. 71 – 79

Abstract

Read online

A newly identified gene, p51, is a functional and structural homologue of the p53 gene and thus a candidate tumor suppressor gene. To elucidate the role of the p51 gene in lung carcinogenesis, we determined the sequences of exon-intron boundaries and the 5′- and 3′-flanking regions of all the 15 coding exons and performed a mutation analysis, as well as detailed analysis for gene expression. A frameshift mutation was detected in 1 of 44 lung cancer cell lines, whereas no mutation was detected in 45 primary lung cancers. Thus, p51 mutation occurs only in a small subset of lung cancer. Expression of the p51 gene was detected in 23 of 43 cell lines by Northern blot analysis and 34 of 44 by reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Thus, p51 expression is low or absent in a subset of lung cancer. The ΔN isotype of p51 transcripts was dominantly expressed in several cell lines, particularly in cell lines with high levels of p51 expression. Because the ΔN isotype encodes a protein that transdominantly suppresses the transactivation function of the TA type of p51, it is possible that p51 protein is not functionally active, even in lung cancer cells with p51 mRNA expression, due to expression of dominant-negative p51 protein. These results suggested that the p51 gene is inactive in a considerable proportion of lung cancers. RT-PCR analysis also revealed the presence of a novel type of mRNA transcript, p51δ, which lacks exons 12 and 13 by alternative splicing. The δ isotype was expressed in 18 of 44 lung cancer cell lines and in diverse normal tissues. Further analysis on p51 expression in cancerous as well as noncancerous cells will provide us with valuable information for the understanding of multiple functions of the p53 family proteins in human carcinogenesis.

Keywords