KONA Powder and Particle Journal (Feb 2014)

Characterization of Oxide-Dispersion-Strengthened (ODS) Alloy Powders Processed by Mechano-Chemical-Bonding (MCB) and Balling Milling (BM)

  • Longzhou Ma,
  • Bruce S.-J. Kang,
  • Mary A. Alvin,
  • C. C. Huang

DOI
https://doi.org/10.14356/kona.2014004
Journal volume & issue
Vol. 31, no. 0
pp. 146 – 155

Abstract

Read online

Two types of powder processing techniques, Mechano-Chemical-Bonding (MCB) and MCB plus ball-milling (BM) with reduced time, have been employed to process the nickel-based oxide-dispersion-strengthened (ODS) alloy powders with composition of Ni-20Cr-5A1-3W-1.5Y2O3 to explore the alternate routes for fabricating, homogenizing and mechanical alloying (MA) the ODS alloy powders, which are usually processed by a prolonged ball-milling or rod-milling technique. In order to examine and evaluate the microstructure, morphology, blending homogeneity and MA effect of alloying powders, the commercial ball-milled ODS MA 956 alloy powders and experimental alloy powders processed by MCB only and MCB plus BM were subjected to microscopic and spectroscopic characterization and analysis using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A FIB (focus ion beam) lift-out technique was employed to prepare the TEM cross-section samples of processed powders. The results showed that the MCB plus BM with reduced time could produce the ODS alloying powders with homogeneous lamellate structure similar to MA 956 powders processed by conventional BM technique with a prolonged period of time. The ODS alloy powders processed by MCB plus BM are to be utilized to fabricate the bulk ODS alloy product in the further research phase.

Keywords