Mathematics (Mar 2023)
Microelongated Thermo-Elastodiffusive Waves of Excited Semiconductor Material under Laser Pulses Impact
Abstract
The current study focuses on one-dimensional (1D) deformation in an excited microelongated semiconductor medium impacted by optoelectronics with exponential laser-pulsed heat. Diffusion effect is considered in a photothermal problem of a semiconducting media. Microelongated optoelectronics and a broad variety of concepts have been introduced. Appropriate solutions to a set of microelongated photothermal diffusion differential equations have been found. The homogeneous (thermal and mechanical) and isotropic characteristics of the medium are thought to be in the x-direction, including coupled diffusion equations. The linear photo-thermoelasticity (PTE) theory of semiconductors is used to describe thermo-elastodiffusive waves. As a case study, the developed theoretical framework may be used to explore the microelongation-photo-thermoelastic problem in a semiconductor medium caused by the laser pulse. The analytical linear solutions for the main quantities during thermoelastic (TD) and electronic (ED) deformation are obtained using Laplace transforms for dimensionless quantities. To obtain exact expressions of the important physical variables according to certain boundary surface conditions, numerical approximations solutions of the fundamental relevant relations are performed in the Laplace inverse time domain. To describe the wave propagation of the physical fields graphically, the computational results for silicon (Si) semiconductor material are derived using several cases of thermal memory and microelongation factors.
Keywords