Науковий вісник Ужгородського університету. Серія: Математика і інформатика (Oct 2022)

Використання глибинного навчання у задачах класифікації звуків навколишнього середовища

  • Л. П. Добуляк,
  • Д. О. Фербей,
  • С. Б. Костенко

DOI
https://doi.org/10.24144/2616-7700.2022.41(2).118-127
Journal volume & issue
Vol. 41, no. 2
pp. 118 – 127

Abstract

Read online

У даній статті розглянуто різні аспекти, пов'язані з розпізнаванням звуків навколишнього середовища, що є прикладною задачею в багатьох сферах діяльності людини. На відміну від музики та мови, звук навколишнього середовища насичений шумом і не має ритму та мелодії музики або семантичної послідовності мови. Це ускладнює пошук спільних рис серед звукових сигналів навколишнього середовища. У даному дослідженні розв'язання задачі розпізнавання звуків базуються на використанні методів класифікації зображень. Для цього виконується перетворення кожного аудіо-запису вибірки у спеціальні зображення — спектрограму Мела, що є його компактним інформативним візуальним представленням. Щоб підвищити точність розпізнавання звуків, досліджуються різні методи збільшення навчального набору даних. В основі цих методів лежить створення нових екземплярів аудіозаписів шляхом деформації існуючих. За допомогою такого підходу ми можемо збільшити в рази кількість елементів набору даних, таким чином вирішити проблему його обмеженості. Для класифікації звуків навколишнього середовища з набору аудіоданих UrbanSound8K було використано глибинну згорткову нейронну мережу. Щоб оцінити якість (точність та втрати) представленої моделі було застосовано 10-кратну перехресну перевірку.

Keywords