PLoS ONE (Jan 2014)
Identification of S100A9 as biomarker of responsiveness to the methotrexate/etanercept combination in rheumatoid arthritis using a proteomic approach.
Abstract
One way to optimize the drug prescription in rheumatoid arthritis (RA) is to identify predictive biomarkers of drug responsiveness. Here, we investigated the potential "theranostic" value of proteins of the S100 family by monitoring levels of both S100A8 and S100A9 in blood samples from RA patients.For proteomic analysis, peripheral blood mononuclear cells (PBMC) and serum samples were collected in patients prior to initiation of the methotrexate/etanercept (MTX/ETA) combination. Firstly, relative mass spectrometry (MS) quantification focusing on S100A8 and S100A9 proteins was carried out from PBMCs samples to identify potential biomarkers. The same approach was also performed from serum samples from responder (R) and non responder (NR) patients. Finally, to confirm these results, an absolute quantification of S100A8, S100A9 proteins and calprotectin (heterodimer of S100A8/S100A9) was carried out on the serum samples using ELISA.MS analyses revealed that both S100A8 and S100A9 proteins were significantly accumulated in PBMC from responders. In contrast to PBMC, only the S100A9 protein was significantly overexpressed in the serum of R patients. Absolute quantification by ELISA confirmed this result and pointed out a similar expression level of S100A8 protein and calprotectin in sera from both R and NR groups. Thus, the S100A9 protein revealed to be predictive of MTX/ETA responsiveness, contrarily to parameters of inflammation and auto-antibodies which did not allow significant discrimination.This is the first report of an overexpression of S100A9 protein in both PBMCs and serum of patients with subsequent response to the MTX/ETA combination. This protein thus represents an interesting biomarker candidate of therapeutic response in RA.