IEEE Access (Jan 2018)
Precoding Aided Generalized Spatial Modulation With an Iterative Greedy Algorithm
Abstract
This paper divides antennas at the transmitter into several transmit antenna groups (TAGs) and extends the generalized spatial modulation (GSM) idea to a new precoding-aided multiple-input multiple-output system, which is referred to as precoding-aided GSM (PGSM) system. To mitigate the influence caused by correlated channels, we consider the interleaved grouping scheme which leads to a minimum antenna correlation within the same TAG. To select the receive antenna subset with low complexity, we propose an iterative greedy (IG) algorithm that contributes to a maximum equivalent channel gain with low-computational complexity. To reduce the complexity of maximum likelihood (ML) detector, a low complexity IG algorithm-based ML (IG-ML) detector is also derived. Simulation results show that the bit error rate (BER) performance gain up to 3.5 dB is obtained by the proposed PGSM with IG-ML detector over the PGSM with an ordered block minimum mean-squared error detector at a given BER of 10−4. It is also shown that the proposed PGSM with the IG-ML detector achieves a similar BER performance in a high signal-to-noise power ratio region compared with that of an ideal precoding for the GSM with an optimal ML detector.
Keywords