Biomolecules (Apr 2024)

LXR Agonist T0901317′s Hepatic Impact Overrules Its Atheroprotective Action in Macrophages, Driving Early Atherogenesis in Chow-Diet-Fed Male Apolipoprotein E Knockout Mice

  • Menno Hoekstra,
  • Laura M. de Jong,
  • Rick van der Geest,
  • Lidewij R. de Leeuw,
  • Rani Krisnamurthi,
  • Janine J. Geerling,
  • Miranda Van Eck

DOI
https://doi.org/10.3390/biom14040429
Journal volume & issue
Vol. 14, no. 4
p. 429

Abstract

Read online

Preclinical studies regarding the potential of liver X receptor (LXR) agonists to inhibit macrophage foam cell formation and the development of atherosclerotic lesions are generally executed in mice fed with Western-type diets enriched in cholesterol and fat. Here, we investigated whether LXR agonism remains anti-atherogenic under dietary conditions with a low basal hepatic lipogenesis rate. Hereto, atherosclerosis-susceptible male apolipoprotein E knockout mice were fed a low-fat diet with or without 10 mg/kg/day LXR agonist T0901317 supplementation for 8 weeks. Importantly, T0901317 significantly stimulated atherosclerosis susceptibility, despite an associated increase in the macrophage gene expression levels of cholesterol efflux transporters ABCA1 and ABCG1. The pro-atherogenic effect of T0901317 coincided with exacerbated hypercholesterolemia, hypertriglyceridemia, and a significant rise in hepatic triglyceride stores and macrophage numbers. Furthermore, T0901317-treated mice exhibited elevated plasma MCP-1 levels and monocytosis. In conclusion, these findings highlight that the pro-atherogenic hepatic effects of LXR agonism are dominant over the anti-atherogenic effects in macrophages in determining the overall atherosclerosis outcome under low-fat diet feeding conditions. A low-fat diet experimental setting, as compared to the commonly used high-fat-diet-based preclinical setup, thus appears more sensitive in uncovering the potential relevance of the off-target liver effects of novel anti-atherogenic therapeutic approaches that target macrophage LXR.

Keywords