Sensors (Dec 2022)

Zinc Phthalocyanine Sensing Mechanism Quantification for Potential Application in Chemical Warfare Agent Detectors

  • Paulina Powroźnik,
  • Barbara Solecka,
  • Piotr Pander,
  • Wiesław Jakubik,
  • Fernando B. Dias,
  • Maciej Krzywiecki

DOI
https://doi.org/10.3390/s22249947
Journal volume & issue
Vol. 22, no. 24
p. 9947

Abstract

Read online

Rapid and accurate detection of lethal volatile compounds is an emerging requirement to ensure the security of the current and future society. Since the threats are becoming more complex, the assurance of future sensing devices’ performance can be obtained solely based on a thorough fundamental approach, by utilizing physics and chemistry together. In this work, we have applied thermal desorption spectroscopy (TDS) to study dimethyl methylophosphate (DMMP, sarin analogue) adsorption on zinc phthalocyanine (ZnPc), aiming to achieve the quantification of the sensing mechanism. Furthermore, we utilize a novel approach to TDS that involves quantum chemistry calculations for the determination of desorption activation energies. As a result, we have provided a comprehensive description of DMMP desorption processes from ZnPc, which is the basis for successful future applications of sarin ZnPc-based sensors. Finally, we have verified the sensing capability of the studied material at room temperature using impedance spectroscopy and took the final steps towards demonstrating ZnPc as a promising sarin sensor candidate.

Keywords