Diagnostics (Jun 2023)

Clinical Implication and Prognostic Value of Artificial-Intelligence-Based Results of Chest Radiographs for Assessing Clinical Outcomes of COVID-19 Patients

  • Hyun Joo Shin,
  • Min Hyung Kim,
  • Nak-Hoon Son,
  • Kyunghwa Han,
  • Eun-Kyung Kim,
  • Yong Chan Kim,
  • Yoon Soo Park,
  • Eun Hye Lee,
  • Taeyoung Kyong

DOI
https://doi.org/10.3390/diagnostics13122090
Journal volume & issue
Vol. 13, no. 12
p. 2090

Abstract

Read online

This study aimed to investigate the clinical implications and prognostic value of artificial intelligence (AI)-based results for chest radiographs (CXR) in coronavirus disease 2019 (COVID-19) patients. Patients who were admitted due to COVID-19 from September 2021 to March 2022 were retrospectively included. A commercial AI-based software was used to assess CXR data for consolidation and pleural effusion scores. Clinical data, including laboratory results, were analyzed for possible prognostic factors. Total O2 supply period, the last SpO2 result, and deterioration were evaluated as prognostic indicators of treatment outcome. Generalized linear mixed model and regression tests were used to examine the prognostic value of CXR results. Among a total of 228 patients (mean 59.9 ± 18.8 years old), consolidation scores had a significant association with erythrocyte sedimentation rate and C-reactive protein changes, and initial consolidation scores were associated with the last SpO2 result (estimate −0.018, p = 0.024). All consolidation scores during admission showed significant association with the total O2 supply period and the last SpO2 result. Early changing degree of consolidation score showed an association with deterioration (odds ratio 1.017, 95% confidence interval 1.005–1.03). In conclusion, AI-based CXR results for consolidation have potential prognostic value for predicting treatment outcomes in COVID-19 patients.

Keywords