Journal of Dairy Science (May 2022)
Kinetics of heat-induced interactions among whey proteins and casein micelles in sheep skim milk and aggregation of the casein micelles
Abstract
ABSTRACT: The interactions among the proteins in sheep skim milk (SSM) during heat treatments (67.5–90°C for 0.5–30 min) were characterized by the kinetics of the denaturation of the whey proteins and of the association of the denatured whey proteins with casein micelles, and changes in the size and structure of casein micelles. The relationship between the size of the casein micelles and the association of whey proteins with the casein micelles is discussed. The level of denaturation and association with the casein micelles for β-lactoglobulin (β-LG) and α-lactalbumin (α-LA) increased with increasing heating temperature and time; the rates of denaturation and association with the casein micelles were markedly higher for β-LG than for α-LA in the temperature range 80 to 90°C; the Arrhenius critical temperature was 80°C for the denaturation of both β-LG and α-LA. The casein micelle size increased by 7 to 120 nm, depending on the heating temperature and the holding time. For instance, the micelle size (about 293 nm) of SSM heated at 90°C for 30 min increased by about 70% compared with that (about 174.6 nm) of unheated SSM. The casein micelle size increased slowly by a maximum of about 65 nm until the level of association of the denatured whey proteins with casein micelles reached 95%, and then increased markedly by a maximum of about 120 nm when the association level was greater than about 95%. The marked increases in casein micelle size in heated SSM were due to aggregation of the casein micelles. Aggregation of the casein micelles and association of whey protein with the micelles occurred simultaneously in SSM during heating.