Molecular Autism (Apr 2011)

Review of neuroimaging in autism spectrum disorders: what have we learned and where we go from here

  • Anagnostou Evdokia,
  • Taylor Margot J

DOI
https://doi.org/10.1186/2040-2392-2-4
Journal volume & issue
Vol. 2, no. 1
p. 4

Abstract

Read online

Abstract Autism spectrum disorder (ASD) refers to a syndrome of social communication deficits and repetitive behaviors or restrictive interests. It remains a behaviorally defined syndrome with no reliable biological markers. The goal of this review is to summarize the available neuroimaging data and examine their implication for our understanding of the neurobiology of ASD. Although there is variability in the literature on structural magnetic resonance literature (MRI), there is evidence of volume abnormalities in both grey and white matter, with a suggestion of some region-specific differences. Early brain overgrowth is probably the most replicated finding in a subgroup of people with ASD, and new techniques, such as cortical-thickness measurements and surface morphometry have begun to elucidate in more detail the patterns of abnormalities as they evolve with age, and are implicating specific neuroanatomical or neurodevelopmental processes. Functional MRI and diffusion tensor imaging techniques suggest that such volume abnormalities are associated with atypical functional and structural connectivity in the brain, and researchers have begun to use magnetic resonance spectroscopy (MRS) techniques to explore the neurochemical substrate of such abnormalities. The data from multiple imaging methods suggests that ASD is associated with an atypically connected brain. We now need to further clarify such atypicalities, and start interpreting them in the context of what we already know about typical neurodevelopmental processes including migration and organization of the cortex. Such an approach will allow us to relate imaging findings not only to behavior, but also to genes and their expression, which may be related to such processes, and to further our understanding of the nature of neurobiologic abnormalities in ASD.