Nature Communications (Oct 2023)

The chromatin network helps prevent cancer-associated mutagenesis at transcription-replication conflicts

  • Aleix Bayona-Feliu,
  • Emilia Herrera-Moyano,
  • Nibal Badra-Fajardo,
  • Iván Galván-Femenía,
  • María Eugenia Soler-Oliva,
  • Andrés Aguilera

DOI
https://doi.org/10.1038/s41467-023-42653-0
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Genome instability is a feature of cancer cells, transcription being an important source of DNA damage. This is in large part associated with R-loops, which hamper replication, especially at head-on transcription-replication conflicts (TRCs). Here we show that TRCs trigger a DNA Damage Response (DDR) involving the chromatin network to prevent genome instability. Depletion of the key chromatin factors INO80, SMARCA5 and MTA2 results in TRCs, fork stalling and R-loop-mediated DNA damage which mostly accumulates at S/G2, while histone H3 Ser10 phosphorylation, a mark of chromatin compaction, is enriched at TRCs. Strikingly, TRC regions show increased mutagenesis in cancer cells with signatures of homologous recombination deficiency, transcription-coupled nucleotide excision repair (TC-NER) and of the AID/APOBEC cytidine deaminases, being predominant at head-on collisions. Thus, our results support that the chromatin network prevents R-loops and TRCs from genomic instability and mutagenic signatures frequently associated with cancer.