E3S Web of Conferences (Jan 2021)

Intensifying the process of methane gas hydrates crystallization in the presence of surface-activated substances

  • Svietkina Olena,
  • Kovalevska Iryna,
  • Sai Kateryna,
  • Prokopenko Kostiantyn

DOI
https://doi.org/10.1051/e3sconf/202123001004
Journal volume & issue
Vol. 230
p. 01004

Abstract

Read online

The crystallization process of gas hydrates during their formation in the presence of surface-active substances (SAS) is studied. The research is conducted in two directions – theoretical and experimental. Experimental data on the crystallization rate of methane gas hydrates formation in the presence of surfactants have been obtained: high-molecular compounds are used on the basis of polymeric quaternary ammonium salts containing side aliphatic radicals of various lengths in the acyl fragment, as well as a number of specific surfactants. The process of methane gas hydrates formation is performed using a laboratory setup of the NPO modification for the gas hydrates creation. To analyse the experimental data, technical and metrological instruments are used: stalagmometric method with automatic photoelectric drop counting, conductometric method, Wheatstone bridge, spectrophotometric titration of amino end-groups, viscometer VPZh-1. It has been substantiated that the crystal formation rate depends on the surfactant concentration. New experimental dependences of the gas hydrates formation on surfactants under thermobaric conditions in the presence of surfactants have been found. It has been revealed that the crystallization process during the methane gas hydrates formation is accelerated in the presence of a surfactant. As a result of their application, the effect of solubilization and catalysis arises with the formation of the so-called “diffusion zone”, the size of which decreases in the presence of surfactants, thereby accelerating the substance transfer to the surface on which crystallization occurs. An increase in the surfactant concentration leads to an increase in the rate of molecular diffusion, and also creates a more intense turbulent diffusion.