iScience (Sep 2020)

Acetylation of AMPA Receptors Regulates Receptor Trafficking and Rescues Memory Deficits in Alzheimer's Disease

  • Margaret O'Connor,
  • Yang-Ping Shentu,
  • Guan Wang,
  • Wen-Ting Hu,
  • Zhen-Dong Xu,
  • Xiao-Chuan Wang,
  • Rong Liu,
  • Heng-Ye Man

Journal volume & issue
Vol. 23, no. 9
p. 101465

Abstract

Read online

Summary: In Alzheimer's disease (AD), decreases in the amount and synaptic localization of AMPA receptors (AMPARs) result in weakened synaptic activity and dysfunction in synaptic plasticity, leading to impairments in cognitive functions. We have previously found that AMPARs are subject to lysine acetylation, resulting in higher AMPAR stability and protein accumulation. Here we report that AMPAR acetylation was significantly reduced in AD and neurons with Aβ incubation. We identified p300 as the acetyltransferase responsible for AMPAR acetylation and found that enhancing GluA1 acetylation ameliorated Aβ-induced reductions in total and cell-surface AMPARs. Importantly, expression of acetylation mimetic GluA1 (GluA1-4KQ) in APP/PS1 mice rescued impairments in synaptic plasticity and memory. These findings indicate that Aβ-induced reduction in AMPAR acetylation and stability contributes to synaptopathy and memory deficiency in AD, suggesting that AMPAR acetylation may be an effective molecular target for AD therapeutics.

Keywords