In this work, we define the concept of a w-b-cone distance in t v s -cone b-metric spaces which differs from generalized c-distance in cone b-metric spaces, and we discuss its properties. Our results are significant, since all of the results in fixed point theory with respect to a generalized c-distance can be introduced in the version of w-b-cone distance. Moreover, using Minkowski functionals in topological vector spaces, we prove the equivalence between some fixed point results with respect to a w t -distance in general b-metric spaces and a w-b-cone distance in t v s -cone b-metric spaces.