Fishes (Apr 2022)

Earlier Activation of Interferon and Pro-Inflammatory Response Is Beneficial to Largemouth Bass (<i>Micropterus salmoides</i>) against Rhabdovirus Infection

  • Runzhen He,
  • Qianrong Liang,
  • Ningyu Zhu,
  • Xiaoye Zheng,
  • Xiaoming Chen,
  • Fan Zhou,
  • Xueyan Ding

DOI
https://doi.org/10.3390/fishes7020090
Journal volume & issue
Vol. 7, no. 2
p. 90

Abstract

Read online

In order to understand the immune response of largemouth bass against Micropterus salmoides Rhabdovirus (MSRV), assisting disease resistance breeding, three largemouth bass breeding varieties Micropterus salmoides “Youlu No 3” (U3), “Youlu No 1” (U1) and “Zhelu No 1” (P1) were challenged intraperitoneally with MSRV. Serum and tissues were sampled to study the changes in non-specific immune parameters, viral loads, and transcript levels of immune-related genes, and the cumulative mortality rate was recorded daily for 14 days. The results showed that the cumulative mortality rates in the U1, P1, and U3 groups were 6.66% ± 2.89%, 3.33% ± 2.89%, and 0, respectively. The higher mortality may attribute to the increased viral loads after infection in the liver (2.79 × 105 and 2.38 × 105 vs. 1.3 × 104 copies/mg), spleen (2.14 × 105 and 9.40 × 104 vs. 4.21 × 103 copies/mg), and kidney (3.59 × 104 and 8.40 × 103 vs. 2.42 × 103 copies/mg) in the U1 and P1 groups compared to the U3 group. The serum non-specific immune parameters (lysozyme, catalase, and acid phosphatase) were found to be increased significantly in the U3 group. In addition, the transcripts of interferon-related genes (IFN-γ, IRF3, and IRF7) and pro-inflammatory-related genes (TNF-α and IL-1β) exhibited up-regulation and peaked at 6 h post infection in the U3 group, which also exhibited up-regulation but peaked at 12–24 h post infection in the U1 and P1 groups. In conclusion, these findings indicate that earlier activation of interferon and pro-inflammatory response is beneficial to largemouth bass against MSRV infection. This experiment may provide an insight into understanding the immune mechanism of largemouth bass against MSRV infection and contributes to molecular-assisted selection.

Keywords