Molecules (Jun 2017)

A Simple Defined Medium for the Production of True Diketopiperazines in Xylella fastidiosa and Their Identification by Ultra-Fast Liquid Chromatography-Electrospray Ionization Ion Trap Mass Spectrometry

  • Michelli Massaroli da Silva,
  • Moacir dos Santos Andrade,
  • Anelize Bauermeister,
  • Marcus Vinícius Merfa,
  • Moacir Rossi Forim,
  • João Batista Fernandes,
  • Paulo Cezar Vieira,
  • Maria Fátima das Graças Fernandes da Silva,
  • Norberto Peporine Lopes,
  • Marcos Antônio Machado,
  • Alessandra Alves de Souza

DOI
https://doi.org/10.3390/molecules22060985
Journal volume & issue
Vol. 22, no. 6
p. 985

Abstract

Read online

Diketopiperazines can be generated by non-enzymatic cyclization of linear dipeptides at extreme temperature or pH, and the complex medium used to culture bacteria and fungi including phytone peptone and trypticase peptone, can also produce cyclic peptides by heat sterilization. As a result, it is not always clear if many diketopiperazines reported in the literature are artifacts formed by the different complex media used in microorganism growth. An ideal method for analysis of these compounds should identify whether they are either synthesized de novo from the products of primary metabolism and deliver true diketopiperazines. A simple defined medium (X. fastidiosa medium or XFM) containing a single carbon source and no preformed amino acids has emerged as a method with a particularly high potential for the grown of X. fastidiosa and to produce genuine natural products. In this work, we identified a range of diketopiperazines from X. fastidiosa 9a5c growth in XFM, using Ultra-Fast Liquid Chromatography coupled with mass spectrometry. Diketopiperazines are reported for the first time from X. fastidiosa, which is responsible for citrus variegated chlorosis. We also report here fatty acids from X. fastidiosa, which were not biologically active as diffusible signals, and the role of diketopiperazines in signal transduction still remains unknown.

Keywords