BMC Genomics (Aug 2018)

In-solution Y-chromosome capture-enrichment on ancient DNA libraries

  • Diana I. Cruz-Dávalos,
  • María A. Nieves-Colón,
  • Alexandra Sockell,
  • G. David Poznik,
  • Hannes Schroeder,
  • Anne C. Stone,
  • Carlos D. Bustamante,
  • Anna-Sapfo Malaspinas,
  • María C. Ávila-Arcos

DOI
https://doi.org/10.1186/s12864-018-4945-x
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background As most ancient biological samples have low levels of endogenous DNA, it is advantageous to enrich for specific genomic regions prior to sequencing. One approach—in-solution capture-enrichment—retrieves sequences of interest and reduces the fraction of microbial DNA. In this work, we implement a capture-enrichment approach targeting informative regions of the Y chromosome in six human archaeological remains excavated in the Caribbean and dated between 200 and 3000 years BP. We compare the recovery rate of Y-chromosome capture (YCC) alone, whole-genome capture followed by YCC (WGC + YCC) versus non-enriched (pre-capture) libraries. Results The six samples show different levels of initial endogenous content, with very low (< 0.05%, 4 samples) or low (0.1–1.54%, 2 samples) percentages of sequenced reads mapping to the human genome. We recover 12–9549 times more targeted unique Y-chromosome sequences after capture, where 0.0–6.2% (WGC + YCC) and 0.0–23.5% (YCC) of the sequence reads were on-target, compared to 0.0–0.00003% pre-capture. In samples with endogenous DNA content greater than 0.1%, we found that WGC followed by YCC (WGC + YCC) yields lower enrichment due to the loss of complexity in consecutive capture experiments, whereas in samples with lower endogenous content, the libraries’ initial low complexity leads to minor proportions of Y-chromosome reads. Finally, increasing recovery of informative sites enabled us to assign Y-chromosome haplogroups to some of the archeological remains and gain insights about their paternal lineages and origins. Conclusions We present to our knowledge the first in-solution capture-enrichment method targeting the human Y-chromosome in aDNA sequencing libraries. YCC and WGC + YCC enrichments lead to an increase in the amount of Y-DNA sequences, as compared to libraries not enriched for the Y-chromosome. Our probe design effectively recovers regions of the Y-chromosome bearing phylogenetically informative sites, allowing us to identify paternal lineages with less sequencing than needed for pre-capture libraries. Finally, we recommend considering the endogenous content in the experimental design and avoiding consecutive rounds of capture, as clonality increases considerably with each round.

Keywords