eLife (Jan 2022)

Fine-tuning of β-catenin in mouse thymic epithelial cells is required for postnatal T-cell development

  • Sayumi Fujimori,
  • Izumi Ohigashi,
  • Hayato Abe,
  • Yosuke Matsushita,
  • Toyomasa Katagiri,
  • Makoto M Taketo,
  • Yousuke Takahama,
  • Shinji Takada

DOI
https://doi.org/10.7554/eLife.69088
Journal volume & issue
Vol. 11

Abstract

Read online

In the thymus, the thymic epithelium provides a microenvironment essential for the development of functionally competent and self-tolerant T cells. Previous findings showed that modulation of Wnt/β-catenin signaling in mouse thymic epithelial cells (TECs) disrupts embryonic thymus organogenesis. However, the role of β-catenin in TECs for postnatal T-cell development remains to be elucidated. Here, we analyzed gain-of-function (GOF) and loss-of-function (LOF) of β-catenin highly specific in mouse TECs. We found that GOF of β-catenin in TECs results in severe thymic dysplasia and T-cell deficiency beginning from the embryonic period. By contrast, LOF of β-catenin in TECs reduces the number of cortical TECs and thymocytes modestly and only postnatally. These results indicate that fine-tuning of β-catenin expression within a permissive range is required for TECs to generate an optimal microenvironment to support postnatal T-cell development.

Keywords