EPJ Web of Conferences (Jan 2024)

Symbolic Regression on FPGAs for Fast Machine Learning Inference

  • Tsoi Ho Fung,
  • Pol Adrian Alan,
  • Loncar Vladimir,
  • Govorkova Ekaterina,
  • Cranmer Miles,
  • Dasu Sridhara,
  • Elmer Peter,
  • Harris Philip,
  • Ojalvo Isobel,
  • Pierini Maurizio

DOI
https://doi.org/10.1051/epjconf/202429509036
Journal volume & issue
Vol. 295
p. 09036

Abstract

Read online

The high-energy physics community is investigating the potential of deploying machine-learning-based solutions on Field-Programmable Gate Arrays (FPGAs) to enhance physics sensitivity while still meeting data processing time constraints. In this contribution, we introduce a novel end-to-end procedure that utilizes a machine learning technique called symbolic regression (SR). It searches the equation space to discover algebraic relations approximating a dataset. We use PySR (a software to uncover these expressions based on an evolutionary algorithm) and extend the functionality of hls4ml (a package for machine learning inference in FPGAs) to support PySR-generated expressions for resource-constrained production environments. Deep learning models often optimize the top metric by pinning the network size because the vast hyperparameter space prevents an extensive search for neural architecture. Conversely, SR selects a set of models on the Pareto front, which allows for optimizing the performance-resource trade-off directly. By embedding symbolic forms, our implementation can dramatically reduce the computational resources needed to perform critical tasks. We validate our method on a physics benchmark: the multiclass classification of jets produced in simulated proton-proton collisions at the CERN Large Hadron Collider. We show that our approach can approximate a 3-layer neural network using an inference model that achieves up to a 13-fold decrease in execution time, down to 5 ns, while still preserving more than 90% approximation accuracy.