Reverse Osmosis Concentrate: Physicochemical Characteristics, Environmental Impact, and Technologies
Hugo Valdés,
Aldo Saavedra,
Marcos Flores,
Ismael Vera-Puerto,
Hector Aviña,
Marisol Belmonte
Affiliations
Hugo Valdés
Centro de Innovación en Ingeniería Aplicada (CIIA), Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule (UCM), Av. San Miguel 3605, Talca 3460000, Chile
Aldo Saavedra
Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O’Higgins 3363, Estación Central 9160000, Chile
Marcos Flores
Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Avenida Carlos Schorr 255, Talca 3473620, Chile
Ismael Vera-Puerto
Centro de Innovación en Ingeniería Aplicada (CIIA), Departamento de Obras Civiles, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Av. San Miguel 3605, Talca 3460000, Chile
Hector Aviña
iiDEA Group, Department of Industrial and Environmental Process Engineering, Engineering Institute, National Autonomous University of Mexico (UNAM), Ciudad de México 04510, Mexico
Marisol Belmonte
Laboratorio de Biotecnología, Medio Ambiente e Ingeniería (LABMAI), Facultad de Ingeniería, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Valparaíso 2340000, Chile
This study’s aim is to generate a complete profile of reverse osmosis concentrate (ROC), including physicochemical characteristics, environmental impact, and technologies for ROC treatment, alongside element recovery with potential valorization. A systematic literature review was used to compile and analyze scientific information about ROC, and systematic identification and evaluation of the data/evidence in the articles were conducted using the methodological principles of grounded data theory. The literature analysis revealed that two actions are imperative: (1) countries should impose strict regulations to avoid the contamination of receiving water bodies and (2) desalination plants should apply circular economies. Currently, synergizing conventional and emerging technologies is the most efficient method to mitigate the environmental impact of desalination processes. However, constructed wetlands are an emerging technology that promise to be a viable multi-benefit solution, as they can provide simultaneous treatment of nutrients, metals, and trace organic contaminants at a relatively low cost, and are socially accepted; therefore, they are a sustainable solution.