Poultry Science (2020-11-01)

Differences in in vitro responses of the hypothalamo–pituitary–gonadal hormonal axis between low- and high-egg-producing turkey hens

  • Kristen Brady,
  • Julie A. Long,
  • Hsiao-Ching Liu,
  • Tom E. Porter

Journal volume & issue
Vol. 99, no. 11
pp. 6221 – 6232

Abstract

Read online

Low-egg-producing hens (LEPH) ovulate less frequently than high-egg-producing hens (HEPH) and exhibit differences in mRNA levels for components of the hypothalamo–pituitary–gonadal (HPG) axis, suggesting differential responsiveness to trophic stimulation. Ovulation frequency is governed by the production of the pituitary gonadotropins and feedback of the ovarian follicle steroid hormones, which are regulated by HPG axis stimulation and inhibition at the hypothalamic level. The pituitary and follicle cells from LEPH and HEPH were subjected to in vitro hormonal treatments to stimulate or inhibit the HPG axis, followed by expression analysis of mRNA levels for HPG axis genes and radioimmunoassays for steroid hormone production. Statistical analysis was performed using the mixed models procedure of SAS. The pituitary cells from HEPH showed upregulation of genes associated with ovulation stimulation, whereas cells from LEPH showed upregulation of genes associated with inhibition of ovulation. High-egg-producing hens’ follicle cells displayed a higher sensitivity and responsiveness to gonadotropin treatment. Level of egg production impacted ovulation-related gene expression in the pituitary cells as well as steroid hormone production in the follicle cells, with HEPH displaying a greater positive response to stimulation. These findings indicate that differences in egg production among turkey hens likely involve differential responsiveness of the cells within the HPG axis.

Keywords