Journal of High Energy Physics (May 2024)

Holographic complexity of the extended Schwarzschild-de Sitter space

  • Sergio E. Aguilar-Gutierrez,
  • Stefano Baiguera,
  • Nicolò Zenoni

DOI
https://doi.org/10.1007/JHEP05(2024)201
Journal volume & issue
Vol. 2024, no. 5
pp. 1 – 67

Abstract

Read online

Abstract According to static patch holography, de Sitter space admits a unitary quantum description in terms of a dual theory living on the stretched horizon, that is a timelike surface close to the cosmological horizon. In this manuscript, we compute several holographic complexity conjectures in a periodic extension of the Schwarzschild-de Sitter black hole. We consider multiple configurations of the stretched horizons to which geometric objects are anchored. The holographic complexity proposals admit a hyperfast growth when the gravitational observables only lie in the cosmological patch, except for a class of complexity=anything observables that admit a linear growth. All the complexity conjectures present a linear increase when restricted to the black hole patch, similar to the AdS case. When both the black hole and the cosmological regions are probed, codimension-zero proposals are time-independent, while codimension-one proposals can have non-trivial evolution with linear increase at late times. As a byproduct of our analysis, we find that codimension-one spacelike surfaces are highly constrained in Schwarzschild-de Sitter space. Therefore, different locations of the stretched horizon give rise to different behaviours of the complexity conjectures.

Keywords