Viruses (Oct 2023)

A Non-Nucleotide STING Agonist MSA-2 Synergized with Manganese in Enhancing STING Activation to Elicit Potent Anti-RNA Virus Activity in the Cells

  • Hanrui Lin,
  • Rui Zhang,
  • Hanyi Xiang,
  • Xinqian Lin,
  • Xiongting Huang,
  • Jingsong Chen,
  • Long Zhou,
  • Zhidong Zhang,
  • Yanmin Li

DOI
https://doi.org/10.3390/v15112138
Journal volume & issue
Vol. 15, no. 11
p. 2138

Abstract

Read online

Both Manganese (Mn2+) and MSA-2 can activate the downstream signal pathway through stimulator of interferon genes (STING) and induce the expression of type I interferon, which is important for hosts to protect against DNA viruses. However, its effect on RNA viruses remains unknown. In this study, we used Seneca Valley virus (SVV) as a model RNA virus to investigate the inhibitory effects of Mn2+ and MSA-2 on the virus replication in the porcine cells (PK-15 cells). The results showed that both MSA-2 and Mn2+ were able to inhibit the SVV replication in PK-15 cells. The combination of MAS-2 and Mn2+ could confer better protection against SVV. Further studies showed that MSA-2 and Mn2+ could activate TBK1, IRF3 and NFκB through STING and induce the expression of IFN-β, IL-6 and TNF-α. The present study confirmed that MSA-2 synergized with Mn2+ in STING activation to generate a better antiviral effect in vitro, which would be helpful for the further development of effective antiviral drugs in the future.

Keywords