International Journal of Molecular Sciences (Jan 2021)

Histological, Biomechanical, and Biological Properties of Genipin-Crosslinked Decellularized Peripheral Nerves

  • Óscar Darío García-García,
  • Marwa El Soury,
  • David González-Quevedo,
  • David Sánchez-Porras,
  • Jesús Chato-Astrain,
  • Fernando Campos,
  • Víctor Carriel

DOI
https://doi.org/10.3390/ijms22020674
Journal volume & issue
Vol. 22, no. 2
p. 674

Abstract

Read online

Acellular nerve allografts (ANGs) represent a promising alternative in nerve repair. Our aim is to improve the structural and biomechanical properties of biocompatible Sondell (SD) and Roosens (RS) based ANGs using genipin (GP) as a crosslinker agent ex vivo. The impact of two concentrations of GP (0.10% and 0.25%) on Wistar rat sciatic nerve-derived ANGs was assessed at the histological, biomechanical, and biocompatibility levels. Histology confirmed the differences between SD and RS procedures, but not remarkable changes were induced by GP, which helped to preserve the nerve histological pattern. Tensile test revealed that GP enhanced the biomechanical properties of SD and RS ANGs, being the crosslinked RS ANGs more comparable to the native nerves used as control. The evaluation of the ANGs biocompatibility conducted with adipose-derived mesenchymal stem cells cultured within the ANGs confirmed a high degree of biocompatibility in all ANGs, especially in RS and RS-GP 0.10% ANGs. Finally, this study demonstrates that the use of GP could be an efficient alternative to improve the biomechanical properties of ANGs with a slight impact on the biocompatibility and histological pattern. For these reasons, we hypothesize that our novel crosslinked ANGs could be a suitable alternative for future in vivo preclinical studies.

Keywords