Boundary Value Problems (Oct 2020)

Normalized solutions for a coupled fractional Schrödinger system in low dimensions

  • Meng Li,
  • Jinchun He,
  • Haoyuan Xu,
  • Meihua Yang

DOI
https://doi.org/10.1186/s13661-020-01463-9
Journal volume & issue
Vol. 2020, no. 1
pp. 1 – 29

Abstract

Read online

Abstract We consider the following coupled fractional Schrödinger system: { ( − Δ ) s u + λ 1 u = μ 1 | u | 2 p − 2 u + β | v | p | u | p − 2 u , ( − Δ ) s v + λ 2 v = μ 2 | v | 2 p − 2 v + β | u | p | v | p − 2 v in R N , $$ \textstyle\begin{cases} (-\Delta )^{s}u+\lambda _{1}u=\mu _{1} \vert u \vert ^{2p-2}u+ \beta \vert v \vert ^{p} \vert u \vert ^{p-2}u, \\ (-\Delta )^{s}v+\lambda _{2}v=\mu _{2} \vert v \vert ^{2p-2}v+\beta \vert u \vert ^{p} \vert v \vert ^{p-2}v \end{cases}\displaystyle \quad \text{in } {\mathbb{R}^{N}}, $$ with 0 0 $\beta >0$ .

Keywords