Remote Sensing (Nov 2021)
An Urban Flooding Index for Unsupervised Inundated Urban Area Detection Using Sentinel-1 Polarimetric SAR Images
Abstract
Urban flooding causes a variation in radar return from urban areas. However, such variation has not been thoroughly examined for different polarizations because of the lack of polarimetric SAR (PolSAR) images and ground truth data simultaneously collected over flooded urban areas. This condition hinders not only the understanding of the effect mechanism of urban flooding under different polarizations but also the development of advanced methods that could improve the accuracy of inundated urban area detection. Using Sentinel-1 PolSAR and Jilin-1 high-resolution optical images acquired on the same day over flooded urban areas in Golestan, Iran, this study investigated the characteristics and mechanisms of the radar return changes induced by urban flooding under different polarizations and proposed a new method for unsupervised inundated urban area detection. This study found that urban flooding caused a backscattering coefficient increase (BCI) and interferometric coherence decrease (ICD) in VV and VH polarizations. Furthermore, VV polarization was more sensitive to the BCI and ICD than VH polarization. In light of these findings, the ratio between the BCI and ICD was defined as an urban flooding index (UFI), and the UFI in VV polarization was used for the unsupervised detection of flooded urban areas. The overall accuracy, detection accuracy, and false alarm rate attained by the UFI-based method were 96.93%, 91.09%, and 0.95%, respectively. Compared with the conventional unsupervised method based on the ICD and that based on the fusion of backscattering coefficients and interferometric coherences (FBI), the UFI-based method achieved higher overall accuracy. The performance of VV was evaluated and compared to that of VH in the flooded urban area detection using the UFI-, ICD-, and FBI-based methods, respectively. VV polarization produced higher overall accuracy than VH polarization in all the methods, especially in the UFI-based method. By using VV instead of VH polarization, the UFI-based method improved the detection accuracy by 38.16%. These results indicated that the UFI-based method improved flooded urban area detection by synergizing the BCI and ICD in VV polarization.
Keywords