Journal of Translational Medicine (Oct 2021)
Radiomics-based machine learning analysis and characterization of breast lesions with multiparametric diffusion-weighted MR
Abstract
Abstract Background This study aimed to evaluate the utility of radiomics-based machine learning analysis with multiparametric DWI and to compare the diagnostic performance of radiomics features and mean diffusion metrics in the characterization of breast lesions. Methods This retrospective study included 542 lesions from February 2018 to November 2018. One hundred radiomics features were computed from mono-exponential (ME), biexponential (BE), stretched exponential (SE), and diffusion-kurtosis imaging (DKI). Radiomics-based analysis was performed by comparing four classifiers, including random forest (RF), principal component analysis (PCA), L1 regularization (L1R), and support vector machine (SVM). These four classifiers were trained on a training set with 271 patients via ten-fold cross-validation and tested on an independent testing set with 271 patients. The diagnostic performance of the mean diffusion metrics of ME (mADCall b, mADC0–1000), BE (mD, mD*, mf), SE (mDDC, mα), and DKI (mK, mD) were also calculated for comparison. The area under the receiver operating characteristic curve (AUC) was used to compare the diagnostic performance. Results RF attained higher AUCs than L1R, PCA and SVM. The AUCs of radiomics features for the differential diagnosis of breast lesions ranged from 0.80 (BE_D*) to 0.85 (BE_D). The AUCs of the mean diffusion metrics ranged from 0.54 (BE_mf) to 0.79 (ME_mADC0–1000). There were significant differences in the AUCs between the mean values of all diffusion metrics and radiomics features of AUCs (all P < 0.001) for the differentiation of benign and malignant breast lesions. Of the radiomics features computed, the most important sequence was BE_D (AUC: 0.85), and the most important feature was FO-10 percentile (Feature Importance: 0.04). Conclusions The radiomics-based analysis of multiparametric DWI by RF enables better differentiation of benign and malignant breast lesions than the mean diffusion metrics.
Keywords