Nature Communications (Apr 2024)

Double-walled Al-based MOF with large microporous specific surface area for trace benzene adsorption

  • Laigang Hu,
  • Wenhao Wu,
  • Min Hu,
  • Ling Jiang,
  • Daohui Lin,
  • Jian Wu,
  • Kun Yang

DOI
https://doi.org/10.1038/s41467-024-47612-x
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Double-walled metal-organic frameworks (MOFs), synthesized using Zn and Co, are potential porous materials for trace benzene adsorption. Aluminum is with low-toxicity and abundance in nature, in comparison with Zn and Co. Therefore, a double-walled Al-based MOF, named as ZJU-520(Al), with large microporous specific surface area of 2235 m2 g–1, pore size distribution in the range of 9.26–12.99 Å and excellent chemical stability, was synthesized. ZJU-520(Al) is consisted by helical chain of AlO6 clusters and 4,6-Di(4-carboxyphenyl)pyrimidine ligands. Trace benzene adsorption of ZJU-520(Al) is up to 5.98 mmol g–1 at 298 K and P/P 0 = 0.01. Adsorbed benzene molecules are trapped on two types of sites. One (site I) is near the AlO6 clusters, another (site II) is near the N atom of ligands, using Grand Canonical Monte Carlo simulations. ZJU-520(Al) can effectively separate trace benzene from mixed vapor flow of benzene and cyclohexane, due to the adsorption affinity of benzene higher than that of cyclohexane. Therefore, ZJU-520(Al) is a potential adsorbent for trace benzene adsorption and benzene/cyclohexane separation.