Symmetry (Oct 2021)

The Significance of Chimpanzee Occipital Asymmetry to Hominin Evolution

  • Shawn Hurst,
  • Ralph Holloway,
  • Alannah Pearson,
  • Grace Bocko

DOI
https://doi.org/10.3390/sym13101862
Journal volume & issue
Vol. 13, no. 10
p. 1862

Abstract

Read online

Little is known about how occipital lobe asymmetry, width, and height interact to contribute to the operculation of the posterior parietal lobe, despite the utility of knowing this for understanding the relative reduction in the size of the occipital lobe and the increase in the size of the posterior parietal lobe during human brain evolution. Here, we use linear measurements taken on 3D virtual brain surfaces obtained from 83 chimpanzees to study these traits as they apply to operculation of the posterior occipital parietal arcus or bridging gyrus. Asymmetry in this bridging gyrus visibility provides a unique opportunity to study both the human ancestral and human equivalently normal condition in the same individual. Our results show that all three traits (occipital lobe asymmetry, width, and height) are related to this operculation and bridging gyrus visibility but width and not height is the best predictor, against expectations, suggesting that relative reduction of the occipital lobe and exposure of the posterior parietal is a complex phenomenon.

Keywords