Machines (Oct 2021)
A Digital Twin-Oriented Lightweight Approach for 3D Assemblies
Abstract
In the design and operation scenarios driven by Digital Twins, large computer-aided design (CAD) models of production line equipment can limit the real-time performance and fidelity of the interaction between digital and physical entities. Digital CAD models often consist of combined parts with characteristics of discrete folded corner planes. CAD models simplified to a lower resolution by current mainstream mesh simplification algorithms might suffer from significant feature loss and mesh breakage, and the interfaces between the different parts cannot be well identified and simplified. A lightweight approach for common CAD assembly models of Digital Twins is proposed. Based on quadric error metrics, constraints of discrete folded corner plane characteristics of Digital Twin CAD models are added. The triangular regularity in the neighborhood of the contraction target vertices is used as the penalty function, and edge contraction is performed based on the cost. Finally, a segmentation algorithm is employed to identify and remove the interfaces between the two CAD assembly models. The proposed approach is verified through common stereoscopic warehouse, robot base, and shelf models. In addition, a scenario of a smart phone production line is applied. The experimental results indicate that the geometric error of the simplified mesh is reduced, the frame rate is improved, and the integrity of the geometric features and triangular facets is effectively preserved.
Keywords