Fluids (Sep 2024)

Reducing Flow Resistance via Introduction and Enlargement of Microcracks in Convection Enhanced Delivery (CED) in Porous Tumors

  • Md Jawed Naseem,
  • Ronghui Ma,
  • Liang Zhu

DOI
https://doi.org/10.3390/fluids9090215
Journal volume & issue
Vol. 9, no. 9
p. 215

Abstract

Read online

A theoretical simulation is performed to evaluate how microcracks affect the flow resistance in tumors during the convection-enhanced delivery (CED) of nanofluids. Both Darcy’s law and the theory of poroelasticity are used to understand fluid transport with or without microcrack introduction and/or enlargement. The results demonstrate significantly altered pressure and velocity fields in a spherical tumor with a radius of 10 mm due to the presence of a microcrack with a radius of 0.05 mm and length of 3 mm. The non-uniform fluid pressure field enlarges the original cylindrical microcrack to a frustum, with the crack volume more than doubled. Due to the larger permeability and porosity in the microcrack, flow in the tumor is much easier. One finds that the flow resistance with the enlarged microcrack is reduced by 14% from the control without a microcrack. Parametric studies are conducted to show that larger crack radii, longer crack lengths and higher infusing pressures result in further resistance reductions. The largest resistance reduction occurs when the infusing pressure is 4 × 105 Pa and the microcrack is 9 mm long, up to 18% from the control. We conclude that introducing a microcrack is an effective way to facilitate nanofluid delivery in porous tumors using CED.

Keywords