BMC Plant Biology (Dec 2022)
An exploration of mechanism of high quality and yield of Gastrodia elata Bl. f. glauca by the isolation, identification and evaluation of Armillaria
Abstract
Abstract Background Gastrodia elata Bl. f. glauca, a perennial herb of G.elata Bl. in Orchidaceae, is one of the most valuable traditional Chinese medicines. G. elata Bl. is a chlorophyll-free myco-heterotrophic plant, which must rely on the symbiotic growth of Armillaria, but not all Armillaria strains can play the symbiotic role. Additionally, Armillaria is easy to degenerate after multiple generations, and the compatibility between the strains from other areas and G. elata Bl. f. glauca in Changbai Mountain is unstable. Therefore, it is incredibly significant to isolate, identify and screen the symbiotic Armillaria suitable for the growth of G. elata Bl. f. glauca in Changbai Mountain, and to explore the mechanism by which Armillaria improves the production performance of G. elata Bl. f. glauca. Results Firstly, G. elata Bl. f. glauca tubers, and rhizomorphs and fruiting bodies of Armillaria were used for the isolation and identification of Armillaria. Five Armillaria isolates were obtained in our laboratory and named: JMG, JMA, JMB, JMC and JMD. Secondly, Armillaria was selected based on the yield and the effective component content of G. elata Bl. f. glauca. It was concluded that the yield and quality of G. elata Bl. f. glauca co-planted with JMG is the highest. Finally, the mechanism of its high quality and yield was explored by investigating the effects of different Armillaria strains on the soil, its nutrition element contents and the soil microbial diversity around G. elata Bl. f. glauca in Changbai Mountain. Conclusions Compared with commercial strains, JMG significantly increased the content of Na, Al, Si, Mn, Fe, Zn, Rb and the absorption of C, Na, Mg, Ca, Cr, Cu, Zn and Rb in G. elata Bl. f. glauca; it improved the composition, diversity and metabolic functions of soil microbial communities around G. elata Bl. f. glauca at phylum, class and genus levels; it markedly increased the relative abundance of bacteria such as Chthoniobacter and Armillaria in the dominant populations, and enhanced such functions as Cell motility, amino acid metabolism and Lipid metabolism; it dramatically decreased the relative abundance of Bryobacter and other fungi in the dominant populations, and reduced such functions as microbial energy metabolism, translation and carbohydrate metabolism. This is the main reason why excellent Armillaria strains promote the high quality and yield of G. elata Bl. f. glauca in Changbai Mountain.
Keywords