Quantum Beam Science (Dec 2021)

Laser Peening Analysis of Aluminum 5083: A Finite Element Study

  • Ali Tajyar,
  • Noah Holtham,
  • Nicholas Brooks,
  • Lloyd Hackel,
  • Vincent Sherman,
  • Ali Beheshti,
  • Keivan Davami

DOI
https://doi.org/10.3390/qubs5040034
Journal volume & issue
Vol. 5, no. 4
p. 34

Abstract

Read online

In this research, a finite element (FE) technique was used to predict the residual stresses in laser-peened aluminum 5083 at different power densities. A dynamic pressure profile was used to create the pressure wave in an explicit model, and the stress results were extracted once the solution was stabilized. It is shown that as power density increases from 0.5 to 4 GW/cm2, the induced residual stresses develop monotonically deeper from 0.42 to 1.40 mm. However, with an increase in the power density, the maximum magnitude of the sub-surface stresses increases only up to a certain threshold (1 GW/cm2 for aluminum 5083). Above this threshold, a complex interaction of the elastic and plastic waves occurring at peak pressures above ≈2.5 Hugoniot Elastic Limit (HEL) results in decreased surface stresses. The FE results are corroborated with physical experiments and observations.

Keywords