PLoS ONE (Jan 2024)

Shifts in biodiversity and physical structure of seagrass beds across 5 decades at Carriacou, Grenadines.

  • David Patriquin,
  • Robert E Scheibling,
  • Karen Filbee-Dexter

DOI
https://doi.org/10.1371/journal.pone.0306897
Journal volume & issue
Vol. 19, no. 8
p. e0306897

Abstract

Read online

Caribbean seagrass beds are facing increasing anthropogenic stress, yet comprehensive ground-level monitoring programs that capture the structure of seagrass communities before the 1980s are rare. We measured the distribution of seagrass beds and species composition and abundance of seagrass and associated macroalgae and macroinvertebrates in 3 years over a 47-year period (1969, 1994, 2016) at Carriacou, Granada, an area not heavily impacted by local human activity. Seagrass cover and physical parameters of fringing beds were measured in transects at high (HWE) and low wave energy (LWE) sites; frequency of occurrence of all species, and biomass and morphology of seagrasses, were measured at 100 m2 stations around the island. Losses in nearshore seagrass cover occurred at HWE but not LWE sites between 1969 and 2016 and were associated with increases in the seagrass-free inshore zone (SFI) and erosional scarps within beds. Total biomass did not vary across years although there were progressive changes in seagrass composition: a decline in the dominant Thalassia testudinum and concomitant increase in Syringodium filiforme, and establishment of invasive Halophila stipulacea in 2016 at LWE sites. Species richness and diversity of the seagrass community were highest in 1994, when 94% of macroalgae (excluding Caulerpa) were most abundant, and sea urchins were least abundant, compared to 1969 and 2016. Multivariate statistical analyses showed differences in community composition across the 3 years that were consistent with trends in urchin abundance. Increases in SFI and scarp number in seagrass beds at HWE sites occurred mainly after 1994 and likely were related to increased wave forcing following degradation of offshore coral reefs between 1994 and 2016. Our observations suggest that landward migration of seagrass beds with rapidly rising sea level in future will not be realized in reef-protected seagrass beds at Carriacou barring reversal in the processes that have caused reef flattening.