Symmetry (Oct 2018)
Assessment of Pattern and Shape Symmetry of Bilateral Normal Corneas by Scheimpflug Technology
Abstract
Purpose: The aim of this study was to assess bilateral symmetry in normal fellow eyes by using optical and geometric morphometric parameters. Methods: All participants underwent complete biocular examinations. Scheimpflug tomography data from 66 eyes of 33 patients were registered. The interocular symmetry was based on five patterns: morphogeometric symmetry, axial symmetry at the corneal vertex, angular-spatial symmetry, direct symmetry (equal octants), and enantiomorphism (mirror octants). Results: No statistically significant differences were found between right and left eyes in corneal morphogeometric (p ≥ 0.488) and aberrometric parameters (p ≥ 0.102). Likewise, no statistically significant differences were found in any of the axial symmetry parameters analyzed (p ≥ 0.229), except in the surface rotation angle beta (p = 0.102) and translation coordinates X0 and Y0 (p < 0.001) for the anterior corneal surface, and the rotation angle gamma (p < 0.001) for the posterior surface. Similarly, no statistically significant differences were identified for direct symmetry (p ≥ 0.20) and enantiomorphism (p ≥ 0.75), except for some elevation data in the posterior surface (p < 0.01). Conclusions: The level of symmetry of both corneas of a healthy individual is high, with only some level of disparity between fellow corneas in rotation and translation references. Abnormalities in this pattern of interocular asymmetry may be useful as a diagnostic tool.
Keywords