BMC Musculoskeletal Disorders (Jun 2021)

Can the body slope of interference screw affect initial stability of reconstructed anterior cruciate ligament?: An in-vitro investigation

  • Nazanin Daneshvarhashjin,
  • Mahmoud Chizari,
  • Javad Mortazavi,
  • Gholamreza Rouhi

DOI
https://doi.org/10.1186/s12891-021-04446-8
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Superior biomechanical performance of tapered interference screws, compared with non-tapered screws, with reference to the anterior cruciate ligament (ACL) reconstruction process, has been reported in the literature. However, the effect of tapered interference screw’s body slope on the initial stability of ACL is poorly understood. Thus, the main goal of this study was to investigate the effect of the interference screw’s body slope on the initial stability of the reconstructed ACL. Methods Based on the best screw-bone tunnel diameter ratios in non-tapered screws, two different tapered interference screws were designed and fabricated. The diameters of both screws were equal to bone tunnel diameter in one-third of their length from screw tip, then they were gradually increased by 1mm, in the lower slope (LSTIS), and 2 mm, in the higher slope (HSTIS) screws. To simulate the ACL reconstruction, sixteen soft tissue grafts were fixed, using HSTIS and LSTIS, in synthetic bone blocks. Through applying sub-failure cyclic incremental tensile load, graft-bone-screw construct’s stiffness and graft laxity in each cycle, also through applying subsequent step of loading graft to the failure, maximum load to failure, and graft’s mode of failure were determined. Accordingly, the performance of the fabricated interference screws was compared with each other. Results HSTIS provides a greater graft-bone-screw construct stiffness, and a lower graft laxity, compared to LSTIS. Moreover, transverse rupture of graft fibers for LSTIS, and necking of graft in the HSTIS group were the major types of grafts’ failure. Conclusions HSTIS better replicates the intact ACL’s behavior, compared to LSTIS, by causing less damage in graft’s fibers; reducing graft laxity; and increasing fixation stability. Nonetheless, finding the optimal slope remains as an unknown and can be the subject of future studies.

Keywords